1 Cyprus Earth Observation Data Cube

1.1 Available satellite products

Product Code name

MOD13Q1 - MODIS/Terra Vegetation Indices CYPRUS_MOD13Q1
16-Day L3 Global 250 m
MYD13Q1 - MODIS/Terra Vegetation Indices CYPRUS_MYD13Q1
16-Day L3 Global 250 m

MOD11A1 - MODIS/Terra Land Surface CYPRUS_MODI11A1
Temperature/Emissivity Daily L3 Global 1 km

MYD11A1 - MODIS/Terra Land Surface CYPRUS_MYDI11A1
Temperature/Emissivity Daily L3 Global 1 km

MOD14A1 - MODIS/Terra Thermal CYPRUS MOD14A1
Anomalies/Fire Daily L3 Global 1 km

MYD14A1 - MODIS/Terra Thermal CYPRUS MYD14A1
Anomalies/Fire Daily L3 Global 1 km

MOD15A2H - MODIS/Terra Leaf Area CYPRUS_MOD15A2H
Index/FPAR 8-Day L4 Global 500 m

MYD15A2H - MODIS/Terra Leaf Area CYPRUS_ MYDI15A2H
Index/FPAR 8-Day L4 Global 500 m

MOD17A2H - MODIS/Terra Gross Primary CYPRUS_MODI17A2H
Productivity 8-Day L4 Global 500 m

MYD17A2H - MODIS/Terra Gross Primary CYPRUS MYDI17A2H
Productivity 8-Day L4 Global 500 m

MOD16A2 - MODIS/Terra Net CYPRUS_MOD16A2
Evapotranspiration 8-Day L4 Global 500 m

MYD16A2 - MODIS/Terra Net CYPRUS_MYD16A2
Evapotranspiration 8-Day L4 Global 500 m

MOD44B - MODIS/Terra Vegetation CYPRUS_MOD44B
Continuous Fields Yearly L3 Global 250

Sentinel-1 C-Band Synthetic Aperture Radar CYPRUS_ Sentinell GRD

Ground Range Detected
Sentinel-2 Multi-Spectral Instrument CYPRUS Sentinel2 MSI L2A

[1]:

[2]:

[3]:

[4] :

[23]:

[6]:

[6]:

1.1.1 Important information

All of the products (and their corresponding datasets) index in Cyprus Earth Observation Data
Cube (CEODC) are reprojected to EPSG:32636 (https://epsg.io/32636).

1.1.2 How to load a time-series?

Import libraries
import datacube

Establish a connection/app on CEODC
dc = datacube.Datacube(app="load_ts")

Set starting and ending date for your study
start_time, end_time = "2024-01-01","2024-01-30"

Set up a query to filet datasets
#In every search procedure in CEODC's database user have to indicate:
#output_crs (e.g., EPSG:32636),
#resolution (—native resolution, native resolution), time.
#Dask chunks can be used for parallel processing.
query = {"output_crs":("EPSG:32636"),"resolution":(-250,250),
"time": (start_time,end time),"dask chunks":{}}

1.1.3 Load images according to query

#Product defines the product which under, datasets will be loaded

#*x*kquery_s2 pass query's arguments

#measurements defines certain layers/bands of a product's datasets to be laoded
data = dc.load(product="CYPRUS_Sentinel2 MSI_L2A", **query, measurements =

(]
(_}[IIBOQII s IIBOSII , ||BO4I| , "B05|| , IIB06|| , ||BO7II s IIBOS" s IIB8AII , IIB09|| , IIB11II N IISCLH])

data

<xarray.Dataset>

Dimensions: (time: 6, y: 781, x: 1241)

Coordinates:
* time (time) datetime64[ns] 2024-01-03 2024-01-08 .. 2024-01-28
*y (y) float64 3.985e+06 3.985e+06 3.985e+06 .. 3.79e+06 3.79e+06
* X (x) float64 3.999e+05 4.001e+05 .. 7.096e+05 7.099e+05

spatial_ref 1int32 32636
Data variables:
B0O2 (time, y, x) uintl6 dask.array<chunksize=(1, 781, 1241),

meta=np.ndarray>

B0O3 (time, y, x) uintl6 dask.array<chunksize=(1, 781, 1241),
meta=np.ndarray>

B04 (time, y, x) uintl6 dask.array<chunksize=(1, 781, 1241),
meta=np.ndarray>

BO5 (time, y, x) uintl6 dask.array<chunksize=(1, 781, 1241),
meta=np.ndarray>

B0O6 (time, y, x) uintl6 dask.array<chunksize=(1, 781, 1241),
meta=np.ndarray>

BO7 (time, y, x) uintl6 dask.array<chunksize=(1, 781, 1241),
meta=np.ndarray>

B0O8 (time, y, x) uintl6 dask.array<chunksize=(1, 781, 1241),
meta=np.ndarray>

BSA (time, y, x) uintl6 dask.array<chunksize=(1, 781, 1241),
meta=np.ndarray>

BO9 (time, y, x) uintl16 dask.array<chunksize=(1, 781, 1241),
meta=np.ndarray>

B11 (time, y, x) uint16 dask.array<chunksize=(1, 781, 1241),
meta=np.ndarray>
Attributes:

crs: EPSG:32636

grid_mapping: spatial_ref

1.1.4 Another way to find (not load) datasets for a desired time period and product

[7]: datasets = dc.find_datasets(
product='CYPRUS_Sentinel2 MSI_L2A',
time=(start_time, end_time)

[10]: print(datasets[0:4])

[Dataset <id=5a6dada8-3560-4537-8724-8b7ab5ab248f7
product=CYPRUS_Sentinel2 MSI_L2A location=file:///app/data/definitions_preparer/
dataset_definitions/sentinel two _not_indexed/2024/T36SWD/dataset definition S2A
MSIL2A_20240108T083331_N0510_R021_T368SWD_20240108T114557_indexed.yaml>, Dataset
<id=d150caab-b9cc-41c6-a21e-2652c17b29fa product=CYPRUS_Sentinel2_MSI_L2A locati
on=file:///app/data/definitions_preparer/dataset_definitions/sentinel_two_not_in
dexed/2024/T36SWD/dataset _definition S2B_MSIL2A_ 20240103T083249 N0510_R021_T36SW
D_20240103T100512_indexed.yaml>, Dataset
<1d=9b7e9300-280c-4700-859e-7fba4ed9b0d8 product=CYPRUS_Sentinel2_MSI_L2A locati
on=file:///app/data/definitions_preparer/dataset_definitions/sentinel_two_not_in
dexed/2024/T36SXE/dataset_definition_ S2B_MSIL2A_20240103T083249 NO510_R021_T36SX
E_20240103T100512_indexed.yaml>, Dataset
<id=ec870556-5ae9-475d-81b7-14212b7d45fc product=CYPRUS_Sentinel2 MSI_L2A locati
on=file:///app/data/definitions_preparer/dataset_definitions/sentinel_two_not_in
dexed/2024/T36SXE/dataset definition S2A MSIL2A_20240108T083331 N0510 R021 T36SX
E_20240108T114557_indexed.yaml>]

[14]:

[15]:

[15]:

[35]:

[36]:

[36]:

1.1.5 How to filter datasets of a product?

Filter Sentinel-2 images by tile
from collections import defaultdict
from datetime import datetime

datasets_by_month = defaultdict(list)
for ds in datasets:
Extract the month
month = datetime.fromisoformat (
ds.metadata_doc['properties'] ['datetime']) .strftime("%Y-%m")
Check +if 'T36SVD' <s in the dataset path and group only those datasets
if 'T36SVD' in str(ds.local_path):
datasets_by_month[month] .append(ds)

Select the dataset with the least cloud cover for each month
best_datasets = []
for month, monthly_datasets in datasets_by_month.items():
Sort by cloud cover
best_dataset = min(
monthly_datasets,
key=lambda ds: ds.metadata_doc['properties'].get('odc:cloud_cover', 100)
)
best_datasets.append(best_dataset)

best_datasets

[Dataset <id=afe23b99-acea-4fbe-8c40-c1877ef4d7cd
product=CYPRUS_Sentinel2_ MSI_L2A location=file:///app/data/definitions_preparer/
dataset_definitions/sentinel_two_not_indexed/2024/T36SVD/dataset_definition_S2A_
MSIL2A_20240128T083211_N0510_R021_T36SVD_20240128T113252_indexed.yaml>]

Filter Sentinel-2 images by cloud coverage
def get_cloud_cover(ds):
properties = ds.metadata_doc["properties"]
return properties.get("eo:cloud_cover") or properties.get("odc:
<cloud_cover") or 100

filtered_datasets = [ds for ds in datasets if get_cloud_cover(ds) <= 15]
filtered_datasets

[Dataset <id=90fb7974-105d-42d8-a3c7-773c53eaba38
product=CYPRUS_Sentinel2 MSI_L2A location=file:///app/data/definitions_preparer/
dataset_definitions/sentinel_two_not_indexed/2024/T36SWD/dataset_definition_S2A_
MSIL2A_20240128T083211_N0510_R021_T36SWD_20240128T113252_indexed.yaml>,

Dataset <id=afe23b99-acea-4fbe-8c40-c1877ef4d7cd

product=CYPRUS_Sentinel2 MSI_L2A location=file:///app/data/definitions_preparer/
dataset _definitions/sentinel two _not_indexed/2024/T36SVD/dataset definition S2A
MSIL2A_20240128T083211_N0510_R021_T36SVD_20240128T113252_indexed.yaml>,

Dataset <id=feb46e39-2744-43b0-acdb-5c07d59cadc6
product=CYPRUS_Sentinel2_MSI_L2A location=file:///app/data/definitions_preparer/
dataset_definitions/sentinel_two_not_indexed/2024.bckp/T36SWD/dataset_definition
_S2A_MSIL2A_20240128T083211_NO0510_R021_T36SWD_20240128T113252_indexed.yaml>,

Dataset <id=34271600-5a20-4bfa-94b4-733b3ef71000
product=CYPRUS_Sentinel2 MSI_L2A location=file:///app/data/definitions_preparer/
dataset_definitions/sentinel_two_not_indexed/2024.bckp/T36SVD/dataset_definition
_S2A_MSIL2A_20240128T083211_N0510_R021_T36SVD_20240128T113252_indexed.yaml>]

1.1.6 Band normalization (mandatory)

[27]: data["B08"]
data["B04"]

datal["B08"] / 10000
data["B04"] / 10000

1.1.7 How to calculate a spectral index? (NDVI example)

[28]: data["NDVI"] = (data["B08"] - datal["B04"]) / (data["B08"] + data["B04"])

1.1.8 Clipping

Set up a bbox in EPSG:32636
[29]: bbox = (491199.8528,3842665.0553,494668.2160,3847651.8725)

[30]: data_clipped = data.where((data.x >= bbox[0]) & (data.x <= bbox[2]) &
(data.y>= bbox[1]) & (data.y <= bbox[3]), drop=True)

1.1.9 Masking using Sentinel-2 Scene Classification band

[32]: def apply_scl_mask(data):
SCL values to keep (4: vegetation, 5: bare sotils, 6: water)
For more info refer to:
#https://custom-scripts.sentinel-hub.com/custom-scripts/sentinel-2/
wscene-classification/
valid_pixels = (data["SCL"] == 4) | (data["SCL"] == 5) | (datal["SCL"] == 6)
return data.where(valid_pixels, drop=False)

data_clipped = apply_scl_mask(data_clipped)

[]1:

[3]:

0.0.1 pyLARDA

import pyLARDA
import matplotlib.pyplot as plt
import datetime

larda = pyLARDA.LARDA('remote', uri='http://172.16.63.43:7979"')
campaign = 'caro_limassol'

larda.connect(campaign,build_lists=False)

system = 'POLLYNET'
parameter = 'attbscl1064'

dt_begin = datetime.datetime(2024,10,24,0,0) ## has to be a datetime object -
<no string

dt_end = datetime.datetime(2024,10,25,0,0)

h = [0,6000]

dataset = larda.read(system,parameter, [dt_begin, dt_end],h) ## data-container,
o (dict)

if dt_begin.strftime(')Y/m/d') == dt_end.strftime('Y/m/d"):
date_str = dt_begin.strftime('}Y/m%d")
else:
date_str = '{}-{}'.format(dt_begin.strftime('),Y/m%d'),dt_end.
ostrftime (' %Y%m%d'))

fig,ax = pyLARDA.Transformations.plot_timeheight2(dataset, z_converter='log')
plt.title(f'{campaign}, {date_str}')

fig.savefig(f'./{date_str}_{campaign} {system}_{parameter}.png')
fig.show()

>> LARDA initialized. Documentation available at https://lacros-
tropos.github.io/larda-doc/

campaign list: caro_limassol, lacros_cycare

The data from this campaign is provided by larda without warranty and liability.

Before publishing check the data license and contact the principal investigator.
Detailed information might be available using “larda.description('system',
'parameter') .

CEILOMETER ['beta', 'cbh', 'pbl', 'rc', 'sky_cond']

HATPROgbbin ['BLH', 'BRT', 'CBH', 'HKD_quality', 'HKD_status', 'HPC', 'IRT',
'MET_T', 'MET_p', 'MET_rH', 'TPB', 'TPC', 'iwv', 'lwp'l

MIRA ['LDRg', 'LDRspec', 'SNRCorFac', 'SNRco', 'SNRg', 'VELg', 'Ze', 'Zg',
'Zmie', 'Zspec', 'moise_co', 'noiseco', 'noisecx', 'mnpwl', 'rc', 'sw']
PARSIVEL ['Z', 'n_particles', 'rainrate']

POLLYNET ['CLASS', 'CLASSv2', 'attbsc1064', 'attbsc355', 'attbscb32',
'attbscb32NR', 'qangb32_1064', 'qangb32_1064v2', 'qbscl064', 'gbscl064v2',
'qbscb32', 'qflagb32v2', 'gpardepolb32', 'qpardepolb32v2', 'rh', 'voldepol355',
'voldepol532', 'wvmr']

SNOOPY ['CN', 'R2', 'VEL', 'VELraw', 'advection_vel', 'beta', 'beta_raw',
'uvel', 'v_vel', 'wind_direction']

22.0MB [00:01, 19.7MB/s]

	Cyprus Earth Observation Data Cube
	Available satellite products
	Important information
	How to load a time-series?
	Load images according to query
	Another way to find (not load) datasets for a desired time period and product
	How to filter datasets of a product?
	Band normalization (mandatory)
	How to calculate a spectral index? (NDVI example)
	Clipping
	Masking using Sentinel-2 Scene Classification band

	pyLARDA

